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Abstract

The reactivity of aromatic compounds is of great relevance to pure and applied chemi-
cal disciplines, yet existing methods for estimating gas-phase rate coefficients for their
reactions with free radicals lack accuracy and universality. Here a novel approach is
taken, whereby strong relationships between rate coefficients of aromatic hydrocar-5

bons and a Randić-type topological index are investigated, optimized and developed
into a method which requires no specialist software or computing power.

Measured gas-phase rate coefficients for the reaction of aromatic hydrocarbons with
OH radicals were correlated with a calculated Randić-type index, and optimized by in-
cluding a term for side chain length. Although this method is exclusively for use with10

hydrocarbons, it is more diverse than any single existing methodology since it incor-
porates alkenylbenzenes into correlations, and can be extended towards other radical
species such as O(3P ) (and tentatively NO3, H and Cl). A comparison (with species
common to both techniques) is made between the topological approach advocated
here and a popular approach based on electrophilic subsituent constants, where it15

compares favourably.
A modelling study was carried out to assess the impact of using estimated rate co-

efficients as opposed to measured data in an atmospheric model. The difference in
model output was negligible for a range of NOx concentrations, which implies that this
method has utility in complex chemical models.20

Strong relationships (e.g. for OH, R2 = 0.96) between seemingly diverse compounds
including benzene, multisubstituted benzenes with saturated, unsaturated, aliphatic
and cyclic substitutions and the nonbenzenoid aromatic, azulene suggests that the
Randić-type index presented here represents a new and effective way of describing
aromatic reactivity, based on a quantitative structure-activity relationship (QSAR).25
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1 Introduction

Since its conception, the term “aromatic” used in description of a specific class of
organic compound has been subjected to many refinements, and where ambiguity
remains (e.g. where Hückel’s rule is not obeyed or where the compound in question
is of nonplanar geometry) consensus is met chiefly on the empirical grounds of the5

characteristic reactivity of aromatic compounds in general. The present study uses a
quantitative structure-activity relationship to describe the reactivity of a subset of these
compounds, the arenes, whose gas-phase rate coefficients have hitherto appeared to
have no discernable correlation from knowledge of their constitution alone.

The reactivity of aromatic hydrocarbons with free radicals is of direct importance to a10

variety of chemical subdisciplines including atmospheric chemistry, chemical epidemi-
ology and combustion processes. Motor vehicle emissions and fuel spillage are a major
source of arenes in the urban environment (Calvert et al., 2002), resulting from the high
proportion of arenes present in gasoline (especially in European and diesel formula-
tions) and the close relationship between fuel composition and exhaust composition15

with respect to aromatics (Leppard et al., 1993, 1995). Arenes are classified as car-
cinogenic by the International Agency for Research on Cancer (IARC) and exposure
has been linked to dermal absorption and subsequent biotransformation into harm-
ful metabolites (Pellack-Walker and Blumer, 1986); leukaemia (Carletti and Romano,
2002), cytogenetic damage (Celik et al., 2003) and persisting neurobehavioural dis-20

turbances in humans (Mikkelsen, 1997) and laboratory rats (Gralewicz and Wiaderna,
2001).

Aromatic hydrocarbons are common trace components of the urban atmosphere,
and given their associated health risk, their primacy as tropospheric ozone precursors
(Derwent et al., 1996) and the contributions of their oxidation products towards sec-25

ondary organic aerosol (SOA) formation (Odum et al., 1997), it is highly pertinent to
investigate factors affecting the atmospheric lifetime (e.g. their reactivity towards free
radicals) and the volatility of oxidation products (e.g. the branching ratio between radi-
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cal addition and radical abstraction reactions) of aromatic hydrocarbons.
The present study describes an accurate and accessible method by which unknown

rate coefficients can be estimated for the reaction of arenes with OH and O(3P ) radicals
and provisional estimation methods for certain arene species with H and Cl (where data
are sparse).5

2 Methodology

Methods for calculating the Randić index for saturated and unsaturated hydrocarbons
are described elsewhere in the literature (Randić, 1975; McGillen et al., 2006a, b). The
present method is an extension of that used to calculate the Randić index for unsatu-
rated hydrocarbons (McGillen et al., 2006b), whereby a Kekulé structure is assumed10

for a phenyl group. Although not a true representation of the benzene ring, the alter-
nating single and double bond arrangement of the Kekulé structure assigns the same
hydrogen-suppressed valency to each carbon atom of the aromatic ring and the va-
lency value that is assigned is therefore unimportant, since any error associated with
carbon valence is systematic and is of no concern to a correlation study such as this.15

The Randić index (R) is calculated using Eq. (I)

R = Σ(mn)−0.5 (I)

where m and n are valencies of adjacent vertices joined by an edge. The following is a
worked example for the structural graph of indene, (see Fig. 1).

The valencies are 4 for vertices 1 and 5, 2 for vertex 4 and 3 for vertices 2, 3, 6, 7, 820

and 9. Using Eq. (I), R is calculated:
R = (4 × 3)−0.5 + (3 × 3)−0.5 + (3 × 3)−0.5 + (3 × 2)−0.5 + (2 × 4)−0.5 + (4 × 4)−0.5 +

(4 × 4)−0.5 + (4 × 3)−0.5 + (3 × 3)−0.5 + (3 × 3)−0.5 + (3 × 3)−0.5 + (3 × 3)−0.5 + (3 ×
3)−0.5 + (3 × 4)−0.5

Where m and n correspond to vertices 1 and 2, 2 and 3, 2 and 3, 3 and 4, 4 and 5,25

5 and 1, 5 and 1, 5 and 6, 6 and 7, 6 and 7, 7 and 8, 8 and 9, 8 and 9 and 9 and 1
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respectively, giving the result 4.46.
One drawback of using the Kekulé structure in this approach is that certain arenes

(notably those containing an ortho-substitution) will generate a slightly different index
(typically ±0.01) depending on which of the two resonance structures is used in cal-
culation of the index. Although such a minor difference is considered inconsequential5

for predictive purposes, for thoroughness these two values have been averaged in this
study.

Similar to a phenomenon observed previously for alkenes (McGillen et al., 2006b),
species plot on separate trendlines according to the total number of primary (1◦), sec-
ondary (2◦) and tertiary (3◦) carbon atoms (Σx◦x) present in the side chain(s), examples10

of these subgroups based on Σx◦ are given in Table 1.
Correlation was improved using a nonlinear regression method to model these data,

and incorporating a term for Σx◦ using Eq. (II)

lnk = a0 lnR + a1 + b0 ln (D + 1) (II)

where R is the Randić index, D is Σx◦ and a0, a1 and b0 are the model parameters,15

which can be determined by minimizing the l2-norm of the difference between the rate
coefficient measurements and regression model output.

3 Results

Table 2 lists all known measured room temperature rate coefficients for the reaction of
C6-C10 arenes with OH, O(3P ), NO3, H and Cl radicals together with the respective20

Σx◦ subgroup and calculated Randić index for each species. Experimental data were
obtained from the National Institute of Standards and Technology (NIST) Chemical
Kinetics Database (2006).
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3.1 OH dataset

The OH dataset is the most comprehensive of those covered, and its range of reactivity
extends over two orders of magnitude. Rate coefficients for a large variety of species
are measured, and the dataset therefore offers the most insight into the distribution of
Σx◦ subgroups.5

Figure 2 is a plot of Randić index against the logarithm of the room temperature rate
coefficient (log k298). When plotted with an unmodified Randić index, data are observed
to subdivide into parallel and equally offset lines, similar to correlations observed in
alkene data (McGillen et al., 2006b). Scatter within respective Σx◦0−2 is minimal and
the gradients of trendlines are in good agreement.10

Figure 3 is a plot of log k298 against log k298 modelled using Eq. (II) where a0, b0
and b1 are 10.21, –38.51 and –1.11 respectively. An excellent correlation coefficient
of 0.96 is observed. Species possessing m-substituents appear to contribute most to-
wards the scatter, shown by the enhanced rate coefficients ofm-xylene, mesitylene and
m-ethyltoluene, which results from contributions to the rate coefficients from the stabil-15

ity of the resonance structures of m-substituted radical transition states. The alkenyl-
benzene, β-dimethylstyrene is not included in these correlations because of its highly
anomalous rate coefficient. The unusually slow rate coefficient of this compound was
noted by the original experimental investigators (Chiorboli et al., 1983), who attributed
the non-planar geometry of this compound’s two methyl groups as a contributor to20

the steric hindrance of the molecule with respect to its otherwise reactive substituent
unsaturated bond.

3.2 O(3P) dataset

The second strongest correlation is observed for the O(3P ) dataset with r2 = 0.92,
furthermore the dataset possesses a similar range of reactivity to the OH dataset,25

although does not cover as wide a range in terms of structural diversity.
Figure 4 is a plot of log k298 against log k298 modelled using Eq. (II) where a0, b0

2966

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/2961/2007/acpd-7-2961-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/2961/2007/acpd-7-2961-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
7, 2961–2989, 2007

Predicting arene rate
coefficients

M. R. McGillen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

and b1 are 13.15, –46.04 and -1.62 respectively. Again, a good correlation is observed
and it is expected that with supplementary data for Σx◦>0, a better correlation could be
achieved by improving constraints on model parameters and spacing between Σx◦0−3.

3.3 NO3 dataset

The NO3 dataset covers the largest range of reactivity, extending over seven orders of5

magnitude and is the second most extensive dataset in this study.
Figure 5 is a plot of Randić index against log k298 with respect to NO3. Unlike

the other datasets, an inflection is observed in the data between alkylbenzenes and
alkenylbenzenes. Treated as a single trendline, this phenomenon clearly contributes
to scatter within the correlation of Σx◦0. Although data appear to segregate into Σx◦10

subgroups as observed in the OH and O(3P ) data, subgroups do not appear to exhibit
the uniformity present in the OH data (this data is not presented in Fig. 5 for reasons
of clarity) and further rate coefficient measurements from these subgroups would be
expected to provide further insight into whether or not Σx◦ subgroups are distributed in
a manner analogous to those of OH.15

3.4 H dataset

The H dataset is limited to six measurements. Despite this small sample size, correla-
tion is excellent and appears to exhibit similar trends to those of OH and O(3P ). The
Σx◦0 possesses a strong correlation coefficient of 0.99, and the only known measure-
ment of a Σx◦1 compound, ethylbenzene plots above the Σx◦0 trendline as expected.20

As with other species, kinetic measurements of Σx◦>0 would be expected to strengthen
the relationships observed so far.

3.5 Cl dataset

Likewise limited to six measurements, the Cl correlation is strong, but may exhibit some
curvature. It is anticipated that with further experimental measurements the Σx◦0 cor-25
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relation could be strengthened, and it is expected that similar trends will emerge for
Σx◦>0. However, given the rapidity of Cl-arene reactions, rate coefficients for many
species will approach the collision limit and estimation methods will be unable to differ-
entiate reactivity as it becomes pressure limited.

4 Discussion5

The hydroxyl radical dataset is most comprehensive both in terms of number of rate
coefficients and range of arene substitutions studied. As such, it is the most insightful
with respect to the distribution of Σx◦ subgroups and is used as a template for other
radicals whose behaviour is assumed to be analogous (e.g. O(3P ), H and Cl).

The hydroxyl dataset is likewise most useful for testing the effectiveness of the topo-10

logical approach, since the established arene rate coefficient estimation method of
Zetzsch (1982) and optimized further by Atkinson (1991), based on electrophilic sub-
stituent constants of Brown and Okamoto (1958) appears to have been developed
solely for OH-arene reactions. A direct comparison between the topological approach
and Zetzsch’s method is impossible, since the two techniques predict for a different15

range of aromatic compounds: the topological approach can describe alkenyl substi-
tution whereas Zetzsch’s method cannot, and Zetzsch’s method considers oxygenated
and nitrated substitution whereas the topological approach, at the time of writing has
not been developed to do so. However, where overlap exists between the two meth-
ods (i.e. the alkylbenzenes), a comparison can be made, as is shown in Table 3. It20

is considered most intuitive to assess the predictive capabilities of the two methods
by expressing a ratio relationship, r , between the estimated rate coefficient and the
measured rate coefficient using Eq. (III).

r =
kestimated

kmeasured
(III)

To ensure a direct comparison, where the measured rate coefficient exceeds the esti-25
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mated rate coefficient, r is inverted. As is evident from histograms of these data shown
in Figs. 6a–b, the predictive capability of the topological approach is significantly bet-
ter than Zetzsch’s method, which exhibits a larger range of error and a more diffuse
distribution across this range.

The range of arenes incorporated into the hydroxyl radical correlation surpasses5

Zetzsch’s method in the sense that it includes alkenyl substituted species. This is a
surprising result since the literature suggests that alkenyl substituted arenes react al-
most exclusively through radical addition to the substituted unsaturated bond (Calvert
et al., 2002; personal communication, R. Atkinson, 2006). A corollary of this hypothesis
is that reactions involving alkenyl substituted arenes ought to react via a distinctly dif-10

ferent mechanism to the remaining arenes, where radical addition to the aromatic ring,
hydrogen abstraction from the substituent group(s) and hydrogen abstraction from the
aromatic ring are possible mechanisms. The correlations observed in Figs. 2 and 3 ap-
pear to contradict this hypothesis, since alkenyl substituted arenes fit seamlessly into
the Σx◦0 trendline, a phenomenon that is observed in all datasets studied except for15

that of the nitrate radical. Short of comprehensive product analyses, this study can only
offer a preliminary interpretation of this result, viz. that there are common mechanisms
between alkenyl substituted arenes and other arenes. This hypothesis is supported
by electron density calculations of alkenyl substituted arenes, which indicate that the
aromatic ring possesses comparable electron density to their alkenyl substituents, and20

ought therefore to possess similar reactivity.
From the strong correlations observed in the O(3P ), H and Cl datasets, it appears

that these radicals behave in an analogous way to the OH radical. This is especially
apparent in the O(3P ) correlation, where a similar range of reactivity is observed,
and members of Σx◦0−3 plot in their respective fields on a scatter graph of log k29825

vs. Randić index. However, each Σx◦>0 contains only one data point per subgroup,
assuming there is scatter among these subgroups, the position of the respective trend-
lines of Σx◦1−3 is therefore rather conjectural at the time of writing, but could be con-
strained more accurately with further kinetic measurements of Σx◦>0 species. With this
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in mind, the method used for modelling the hydroxyl radical rate coefficients cannot be
adapted easily to the other classes of compound with the present dataset because of
uncertainties associated with deriving the model parameters in Eq. (II). However, the
position of the Σx◦0 trendline is unlikely to change significantly, and it is recommended
that, as a provisional method for Σx◦0 species, a simple linear regression fit between5

experimental rate coefficient data and the Randić index will produce estimated rate co-
efficients of satisfactory accuracy, given by the equation of the straight line, y=mx + c
of the linear regression. Where y is log k298, x is the Randić index of the compound in
question, the gradientm is 1.648, 1.359 and 1.052 for O(3P ), H and Cl respectively and
the y-intercept c is –18.628, –17.359 and –13.836 for O(3P ), H and Cl respectively. For10

smaller datasets, H and Cl, this method should be used with caution, since the small
sample size precludes a confident analogy with the hydroxyl radical.

The nitrate radical dataset exhibits different and more complex behaviour than the
OH, O(3P ), H and Cl radical datasets. This is to be expected, since the branching
ratio between the reaction pathways of the nitrate radical with arenes are known to15

differ considerably from those of the hydroxyl radical and likely other radicals of simi-
lar behaviour – the major difference being the negligibility of the reaction of the NO3
radical with arene ring systems (Wayne et al., 1990). Evidence for this lack of inter-
action with the ring system is presented by the reversal of the trend of reactivity in
o-, m- and p-substituted alkylbenzenes observed in OH-arene reactions (Wayne et20

al., 1990), whereby m-substituted species are slowest, despite increased activation
of reactive sites in the ring system. In contrast, it appears that interactions with the
aromatic ring system are of primary importance in the reaction of arenes with the hy-
droxyl radical, since m-substitution enhances rates of reaction significantly. Since NO3
attack must therefore occur predominantly on arene substituent sites, the comparison25

between alkyl and alkenyl substituted arenes becomes analogous to a comparison be-
tween NO3-alkane and NO3-alkene reactions, which are kinetically and mechanistically
dissimilar. It is therefore reassuring to note that the Σx◦0 trendline of the NO3 dataset
(see Fig. 5) shows significant scatter, which results from the deviation of alkenyl sub-
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stituted arenes, styrene and indene. It is also notable that the difference in gradient in
the correlation of log k298 and Randić index between alkylbenzene and alkenylbenzene
trendlines, denoted by θ in Fig. 5, is almost identical to that of alkanes and alkenes (not
presented here) calculated using the same method (0.42 and 0.43 respectively).

The emergence of several trends in the NO3 dataset precludes accurate estimation5

of NO3-arene rate coefficients at this time, and it is expected that further experimental
data especially from alkenyl substituted arenes and Σx◦>0 will provide greater insight
into the interaction of nitrate radicals with arenes.

Despite the complex behaviour observed in the NO3 dataset, in general, correlations
with radical-arene rate coefficients are excellent. Since the Randić-type index used10

only encodes the valency of carbon atoms with respect to other carbon atoms, their
adjacency and a term for Σx◦, other molecular properties are not incorporated in the
index, and given the high level of correlation, appear to be of minor importance in
comparison.

Despite the simplicity of the method used, this topological approach generates very15

strong relationships with the overall rate coefficients of arenes. Although an exact
physical interpretation of what the Randić index measures remains subject to discus-
sion (Estrada, 2002), the factors governing arene reactivity are simple enough that this
index can describe them in adequate detail. The Randić index calculation requires few
input parameters, and the result is a description of the connectivity of carbon atoms20

within the molecule. Other factors that might be expected to be of importance such as
the geometry and 3-dimensional spatial configuration of a molecule appear to be minor
in comparison and by considering the details that the Randić index omits, some qual-
itative insight may be gained regarding the relative importance of factors contributing
towards arene reactivity.25
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5 Atmospheric implications

The impact of using rate coefficients estimated through our method versus the recom-
mended values of Calvert et al. (2002) upon the output of an atmospheric model was
assessed. This model employs a simple one-box approach to model the boundary
layer. The box is subjected to emissions and depositions at the Earth’s surface and5

contains rate coefficients, physical and dynamic information, and measurement data.
It uses the rate coefficients of hydrocarbons with respect to OH, NO3 and O3 taken
from the Master Chemical Mechanism (MCM), which is a benchmark mechanism for
chemical and photochemical processes in the troposphere (Jenkin et al., 1997).

To reduce computational effort, a reduced mechanism similar to the CRI scheme10

(Jenkin et al., 2002), which limits the number of reactions within the reaction scheme
was employed. Although this is a simplification, this reduced mechanism is designed
to maintain essential features.

Arene concentrations were obtained from emission inventories. Rate coefficients of
arenes with respect to OH were obtained from measurement data as recommended15

by Calvert et al. (2002). The rate of change of each arene is dependent on its initial
concentration, the level of emission, and the concentrations of atmospheric oxidants
(mainly NO3 and OH). The emissions of NOx, CO, SO2, and VOCs into the model are
based on the UK totals for 2001 reported by the National Atmospheric Emissions In-
ventory. A range of NOx conditions appropriate to the urban environment were required20

for this study, the NOx emissions were scaled by factors of 0.1, 0.5, 1.0, 2.0, and 3.0.
The reduced mechanism was restricted to C≤8 arenes, therefore the list of arenes

for which rate coefficients were altered are: benzene, toluene, p-xylene, o-xylene, m-
xylene, mesitylene, hemimellitene, ψ-cumene, styrene, ethylbenzene, p-ethyltoluene,
o-ethyltoluene, m-ethyltoluene, cumene, and n-propylbenzene. Figure 7 shows that25

over the whole range of NOx conditions, our rate coefficients estimates have a minor
effect upon the modelled mixing ratios of ozone in comparison to using measurement
data. Furthermore, only minor effects were observed upon the concentrations of other
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major species (such as NOx and HOx), especially under conditions of low NOx. Differ-
ences in the concentrations of other important species e.g. formaldehyde (HCHO) and
peroxyacetyl nitrate (PAN) mixing ratios only began to emerge at NOx emission factors
greater than 1.0.

Further modelling studies were conducted to compare the estimates using the topo-5

logical approach with those predicted using the Zetzsch method. As Zetzsch’s method
does not include alkenyl substituted arenes, the rate coefficient of styrene was not al-
tered. The results suggest that rate coefficients predicted by the topological approach
compare to measured values as well as, if not better than the values predicted by Zet-
zsch. The differences between the Zetzsch method versus the topological approach10

become most apparent for [PAN] and [HCHO] under high NOx conditions (see Fig. 8).
As a result of these modelling studies, it is clear that rate coefficients perform well in a

simplified version of the MCM, and it is suggested that the topological approach is most
suitable for inclusion in the full MCM mechanism, where advantage could be made of
the range of arene rate coefficients that can be predicted. It is further suggested that15

there are many species of arene for which kinetics with respect to atmospheric oxidants
are not available that are present in vehicle exhaust emissions (e.g. AQIRP, 1995) and
which therefore are of potential importance in urban environments, and it is probable
that failure to account for these minor species will result in a greater error associated
with model output than the error associated with the use of modelled versus measured20

rate coefficient data.

6 Conclusions

Strong relationships are observed in correlations between the Randić-type index of this
study and log k298 for the reaction of arenes with OH, O(3P ), H and Cl radicals. Correla-
tion is particularly strong with the OH radical, whose dataset is superior in both number25

and range of compounds for which measurements are available. In the correlations
of the remaining radical species considered (excluding NO3), behaviour is assumed to
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be analogous with the OH radical, and rate coefficients should therefore be predicted
using the same method. Although, for these species, further rate coefficient measure-
ments (preferably possessing as large a range in reactivity as possible) from Σx◦>0
are necessary in order to constrain the model parameters of Equation (II) accurately,
facilitating accurate rate coefficient prediction for arenes belonging to Σx◦>0.5

The present correlations with the NO3 radical appear to be complicated by mecha-
nistic dissimilarity between alkyl and alkenyl substituted arenes, resulting in several re-
lationships which are not sufficiently strong to enable accurate prediction of rate coeffi-
cients. Further measurements of both alkyl and alkenyl substituted arenes are required
before this method can be used to predict NO3 rate coefficients accurately. However,10

the trends observed in the NO3 data suggest that the Randić-type index used in this
study is able to identify mechanistically distinct behaviour.

With the exception of the nitrate reaction, correlations of alkenyl-substituted arenes
accord with a general trend incorporating all arene species. This suggests that the
reactions of alkenyl-substituted arenes and alkyl substituted arenes possess very sim-15

ilar mechanisms, contrary to the prevailing opinion in the literature, which suggests
that reaction occurs almost exclusively on the alkenyl substituent (Calvert et al., 2002),
an argument which appears to be founded upon the magnitude of alkenyl substituted
species relative to their alkyl homologues and the two existing product studies of the
OH + styrene reaction (Bignozzi et al., 1981; Tuazon et al., 1993). Here, the failure of20

NO3 to exhibit the same tendency as the other radicals provides a reference point by
which mechanistically distinct behaviour can be recognized in these correlations, the
relationships of the other radicals afford no such discrimination.

Modelling studies identified the topological approach as suitable for inclusion in com-
plex atmospheric models such as the MCM, which at present uses measured rate co-25

efficients for model input, and which may benefit from the range of species that can be
predicted accurately through this approach.

In conclusion, this study finds the topological approach to be eminently suitable for
the estimation of arene-radical gas-phase rate coefficients, because it surpasses the
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methodology of Zetzsch (1982) and Atkinson (1991) both in terms of its diversity and
its accuracy, since this method is able to predict every rate coefficient within a factor of
two of the measured value (with the exception of the anomalously slow rate coefficient
of β-dimethylstyrene). Furthermore, despite its simplicity, the topological approach
represents an accurate description of arene reactivity, and as such an approximation5

of the important factors contributing towards this reactivity.
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Table 1. Examples of bicyclic and monocyclic arenes belonging to Σx°0-2. 

 

Table 2. Measured arene + radical room temperature rate coefficients used in this study, 

alongside Randić-type index and Σx°x subgroup for each respective arene. 

 

Table 3. Comparison between the predictive capabilities of the topological approach and 

the Zetzsch method using the ratio relationship, r between rate coefficients of the 
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Table 1. Examples of bicyclic and monocyclic arenes belonging to Σx◦0−2.
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Table 2. Measured arene + radical room temperature rate coefficients used in this study,
alongside Randić-type index and Σx◦x subgroup for each respective arene.

arene kOH kO(3P ) kNO3 kH kCl R Σx ◦
x

benzene 1.19×10−12 3.16×10−14 5.65×10−14 1.50×10−11 3.000 0
toluene 5.70×10−12 7.63×10−14 6.79×10−17 1.35×10−13 5.91×10−11 3.366 0
p-xylene 1.30×10−11 2.15×10−13 4.53×10−16 5.80×10−13 1.50×10−10 3.732 0
o-xylene 1.14×10−11 1.83×10−13 3.77×10−16 1.50×10−10 3.741 0
m-xylene 2.09×10−11 3.98×10−13 2.32×10−16 1.40×10−10 3.732 0
mesitylene 5.75×10−11 2.60×10−12 8.00×10−16 4.098 0
hemimellitene 3.27×10−11 1.13×10−12 1.86×10−15 4.116 0
ψ-cumene 3.25×10−11 1.02×10−12 1.81×10−15 4.107 0
styrene 5.86×10−11 4.50×10−12 1.51×10−13 3.49×10−12 3.60×10−10 4.309 0
α-methylstyrene 5.30×10−11 4.323 0
β-dimethylstyrene 3.30×10−11 4.732 0
trans-propenylbenzene 5.99×10−11 4.399 0
2-propenylbenzene 4.32×10−12 4.444 0
indene 7.80×10−11 4.10×10−12 4.455 0
azulene 2.72×10−10 3.90×10−10 4.982 0
ethylbenzene 6.07×10−12 5.84×10−14 2.49×10−13 3.927 1
toluene, p-ethyl 1.36×10−11 8.58×10−16 4.293 1
toluene, o-ethyl 1.32×10−11 4.299 1
toluene, m-ethyl 2.24×10−11 4.302 1
indane 1.91×10−11 7.35×10−15 4.445 1
n-propylbenzene 5.71×10−12 4.427 2
cumene 6.61×10−12 6.77×10−14 4.309 2
p-cymene 1.51×10−11 1.00×10−15 4.675 2
tetralin 3.44×10−11 1.11×10−14 4.951 2
benzene, tert-butyl 4.85×10−12 6.64×10−14 4.616 3
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Table 3. Comparison between the predictive capabilities of the topological approach and the
Zetzsch method using the ratio relationship, r between rate coefficients of the respective esti-
mation method and measured rate coefficients.

arene kOHmeas. kOHmod. r kOHZetzsch r

benzene 1.19×10−12 1.71×10−12 1.44 2.30×10−12 1.93
toluene 5.70×10−12 4.61×10−12 1.24 5.90×10−12 1.04
p-xylene 1.30×10−11 1.24×10−11 1.05 7.10×10−12 1.83
o-xylene 1.14×10−11 1.27×10−11 1.12 7.10×10−12 1.61
m-xylene 2.09×10−11 1.24×10−11 1.68 1.50×10−11 1.39
mesitylene 5.75×10−11 3.34×10−11 1.72 3.82×10−11 1.51
hemimellitene 3.27×10−11 3.51×10−11 1.07 1.83×10−11 1.79
ψ-cumene 3.25×10−11 3.42×10−11 1.05 1.83×10−11 1.78
ethylbenzene 6.07×10−12 5.26×10−12 1.15 5.60×10−12 1.08
toluene p-ethyl 1.36×10−11 1.54×10−11 1.13 7.10×10−12 1.92
toluene o-ethyl 1.32×10−11 1.58×10−11 1.20 7.10×10−12 1.86
toluene m-ethyl 2.24×10−11 1.54×10−11 1.46 1.43×10−11 1.57
n-propylbenzene 5.71×10−12 7.24×10−12 1.27 7.50×10−12a 1.31
cumene 6.61×10−12 5.09×10−12 1.30 4.63×10−12 1.25
p-cymene 1.51×10−11 1.53×10−11 1.01 1.21×10−11 1.25
tetralin 3.44×10−11 3.50×10−11 1.01 1.14×10−11b 3.02
benzene, tert-butyl 4.85×10−12 6.78×10−12 1.40 4.30×10−12 1.13

a Mode of calculation unclear from published methodology. Value taken from literature20.
b Mode of calculation unclear from published methodology. Value taken from literature21.
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Fig. 1. Structural graph of indene.
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Fig. 2. A plot of Randić index against measured arene + OH log k298. Data is seen to subdivide
into approximately evenly spaced, parallel subgroups, dependent on Σx◦x.
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Fig. 3. Log-log plot of arene + OH k298 modelled using Eq. (II) against measured k298.
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Fig. 4. Log-log plot of arene + O(3P )k298 modelled using Eq. (II) against measured k298.
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Fig. 5. Log-log plot of Randić index against arene + NO3k298 against measured k298. Stip-
pled lines represent forecasts of the Σx◦0 alkyl- and alkenylbenzene trendlines. The difference
in gradient observed between these trendlines, denoted by θ, is attributed to a difference in
mechanism between the alkylbenzenes (where abstraction from alkyl substituents dominates)
and alkenylbenzenes (where addition to alkenyl substituents dominates).
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Figures 6a –b. 
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Fig. 6. (a) Histogram of the ratio relationship, r between rate coefficients estimated using the
topological approach and measured rate coefficients. (b) Histogram of the ratio relationship, r
between rate coefficients estimated using the Zetzsch method and measured rate coefficients.
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Figure 7 

 
 

 Fig. 7. Ozone mixing ratio modelled with different arene + OH rate coefficients. ——- Rate
coefficients taken from Calvert et al. (2002) and - - - - - rate coefficients predicted by this work.
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Figure 8b 

 
 

 

Fig. 8a. PAN mixing ratio modelled with different arene + OH rate coefficients. ——- Rate
coefficients taken from Calvert et al. (2002) ——- rate coefficients predicted by this work and
——- rate coefficients predicted by Zetzsch (1982).
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Figure 8a 

 

 
 

 

Figure 8b 

 
 

 
Fig. 8b. HCHO mixing ratio modelled with different arene + OH rate coefficients. ——- Rate
coefficients taken from Calvert et al. (2002) ——- rate coefficients predicted by this work and
——- rate coefficients predicted by Zetzsch (1982).
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